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The prediction of ducted fan engine noise using a boundary integral equation
method (BIEM) is considered. Governing equations for the BIEM are based on
linearized acoustics and describe the scattering of incident sound by a thin,
"nite-length cylindrical duct in the presence of a uniform axial in#ow. A classical
boundary value problem (BVP) is derived that includes an axisymmetric, locally
reacting liner on the duct interior. Using potential theory, the BVP is recast as
a system of hypersingular boundary integral equations with subsidiary conditions.
We describe the integral equation derivation and solution procedure in detail. The
development of the computationally e$cient ducted fan noise prediction program
TBIEM3D, which implements the BIEM, and its utility in conducting parametric
noise reduction studies are discussed. Unlike prediction methods based on
spinning mode eigenfunction expansions, the BIEM does not require the
decomposition of the interior acoustic "eld into its radial and axial components
which, for the liner case, avoids the solution of a di$cult complex eigenvalue
problem. Numerical spectral studies are presented to illustrate the nexus between
the eigenfunction expansion representation and BIEM results. We demonstrate
BIEM liner capability by examining radiation patterns for several cases of practical
interest. ( 1999 Academic Press
1. INTRODUCTION

Advanced analytical tools for predicting the sound radiated from engine ducts
facilitate the design of active and passive noise abatement technology. To be useful
in design studies, prediction tools should be fast, versatile, accurate, valid for a wide
range of engineering situations, and implementable on mainstream computer
systems. The ability to compute any portion of the sound "eld without the need to
calculate the entire "eld is an important attribute in this regard. Conventional
computational approaches such as "nite element methods, CFD, and
computational aeroacoustics (CAA) lack this property which limits their usefulness
0022-460X/99/451019#30 $30.00/0 ( 1999 Academic Press



1020 M. H. DUNN E¹ A¸.
for conducting parametric noise studies. On the other hand, boundary integral or
boundary element prediction methods calculate the acoustic "eld pointwise
allowing the designer to compute noise only at acoustically sensitive regions of
space.

In this paper, we present a boundary integral equation method (BIEM) for
predicting ducted fan engine noise. The BIEM is based on the equations of
linearized acoustics with uniform in#ow and predicts the sound scattered by an
in"nitesimally thin, "nite-length cylindrical duct that has been irradiated by some
simple source process. Boundary conditions on the duct interior allow for an
axisymmetric, axially segmented, locally reactive liner with circumferentially
uniform impedance. The liner can be positioned anywhere inside the duct (see
Figure 1). The special case of a hard wall interior was considered in reference [1].

Simple acoustic sources, such as point or line monopoles and dipoles, are used to
generate incident sound. Source con"gurations are composed of N symmetrically
spaced (circumferentially) line or point sources and are situated on a disc
perpendicular to the duct axis (see Figure 1). If the source strengths are constant
in time and the source disk spins with uniform angular speed XI , then classical
spinning modes appear inside the duct. Spinning modes can also be generated by
non-rotating sources with time harmonic strengths. By suitable choices of
monopole and dipole strengths, rotating source con"gurations can be constructed
to simulate the loading and thickness components of fan noise.

In the early 1960s, Tyler and Sofrin "rst introduced the concept of applying
linear in"nite duct, spinning mode analysis to the prediction of ducted fan engine
noise [2]. In this pioneering research, simple propagation and radiation models
were applied to single radial modes incident on the duct inlet. Re#ection and in#ow
e!ects were ignored and only hard wall boundary conditions were considered.
Figure 1. BIEM geometry-source plane located at z"0.
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Many investigators have since expanded these concepts to include enhanced
radiation models, in#ow e!ects, and liner capability. The volume of research on this
subject is considerable and will not be reviewed in any detail here. Comprehensive
surveys can be found in references [3}5].

The "nite duct BIEM presented here provides two fundamental improvements
over simple in"nite duct prediction methods. First, the coupling of radiation and
propagation for the in"nite duct methods requires an estimate of the generalized
impedances at the inlet and exhaust planes. These quantities are then used as input
to some radiation model, such as Rayleigh's formula for sound radiation from
a #anged cylinder, to calculate the acoustic far "eld. For the "nite duct BIEM,
knowledge of the generalized impedances is not required. Re#ections at the duct
openings are determined implicitly. Furthermore, unlike Rayleigh's formula, the
BIEM accounts for edge di!raction and permits noise predictions in the duct
shadow region. Second, in"nite duct methods require the solution of an eigenvalue
problem in which the internal acoustic "eld is written as a linear combination of
circumferential, radial, and axial eigenfunctions. For the liner case, the eigenvalue
problem is di$cult to solve due to the appearance of Bessel functions with complex
argument. A body of research, which is reviewed in reference [3], has been devoted
to the solution of this very di$cult eigenvalue problem. The BIEM does not involve
the solution of the eigenvalue problem because only a circumferential decom-
position of the acoustic "eld is required. If desired, the radial and axial content
of the computed BIEM interior "eld can be obtained using Hankel and Fourier
transform techniques.

Application of the BIEM to ducted fan noise prediction is a four-step process
which we summarize as follows: (1) In accordance with the preceding assumptions
we derive a classical mixed boundary value problem (BVP) for the scattered
acoustic pressure. (2) Using single- and double-layer Helmholtz potentials, the
BVP is converted to a system of hypersingular integral equations for the unknown
layer densities. (3) The system of integral equations is solved numerically by the
method of collocation in which the layer densities are approximated by "nite series
of orthogonal polynomials. (4) The scattered sound "eld is computed pointwise by
numerically integrating the Helmholtz potential representation.

Theoretical details of the BIEM form the bulk of this paper. Much analysis is
devoted to the integral equation development and solution technique. The authors
contend that innovations in these areas have yielded enhanced numerical
procedures that simplify calculations and lead to rapid noise predictions. A ducted
fan noise prediction program, TBIEM3D [6], that implements the BIEM has been
developed. Computational results are presented to illustrate TBIEM3D noise
prediction capabilities and to compare with eigenfunction expansion prediction
methods.

2. BOUNDARY VALUE PROBLEM DERIVATION

We consider the scattering of sound by an in"nitesimally thin, "nite-length
cylindrical duct in the presence of a uniform axial in#ow with Mach number M.
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The duct is irradiated by incident sound produced by a collection of N simple point
or line monopoles and/or dipoles. Acoustic propagation and radiation are based on
the assumption of linearity. The N sources have equal strengths, are located on
a disk perpendicular to the duct axis, and are arranged symmetrically about the
disk (refer to Figure 1). The source disk is centered on the duct axis and either spins
or is stationary. Source strengths are chosen so that the incident acoustic "eld can
be written as a superposition of time harmonic, circumferential modes.

In the analysis that follows, all quantities are non-dimensional: length by rJ
D
,

mass by o8
0
rJ 3
D
, and time by rJ

D
/cJ .

2.1. GOVERNING DIFFERENTIAL EQUATIONS

We adopt the point of view that the duct is translating in the axial (#z) direction
with uniform speed;I and initially consider an Eulerian description of the acoustic
"eld. The total acoustic pressure in the sound "eld is split into known incident and
unknown scattered parts,

p@(r, t, z, t)"p@
i
(r, t, z, t)#p@

s
(r, t, z, t). (1)

In regions of space and time that contain no scattering surfaces, p@
s
is governed by

the homogeneous wave equation

C
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Lt2
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r
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Lr Ar
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LrB!
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Lz2Dp@
s
"0. (2)

Acoustic pressure and radial velocity are related through the radial component of
the acoustic momentum equation,

Lu@
r

Lt
#

Lp@
Lr

"0. (3)

In a frame of reference moving with the duct, the symmetry of the source process
is such that all dependent acoustic variables can be expressed as linear
superpositions of time harmonic circumferential modes. For example, the scattered
pressure has the form

p@
s
(r, t, Z, t)"

=
+

n/~=

Pn
s
(r, Z)e*(kt~nNt) (4a)

and the radial component of total acoustic velocity is written

u@
r
(r, t, Z, t)"

=
+

n/~=

;n
r
(r, Z)e*(kt~nNt), (4b)

where the stretched, moving axial co-ordinate Z is given by

Z"(z!Mt)/b. (5)
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Incident and total acoustic pressures are written similarly. Modal amplitudes in
the BIEM are calculated term by term. For notational convenience, we drop the
superscript n on the modal coe$cients and de"ne the circumferential mode number
m by the equation m"nN.

If the source disk rotates with angular speed XI and the strengths of the N sources
are time independent in the moving frame, then k"mXI rJ

D
/cJ and equations (4a, b)

yield the classical spinning mode representations. In this case, the incident
"eld can be made to simulate that produced by an N-bladed fan. This is
accomplished by manipulating monopole and dipole strengths to approximate
the loading and thickness components of fan noise. For non-spinning sources
whose strengths are time harmonic with excitation frequency u8 , we have k"u8 rJ

D
/cJ

and the time harmonic factor in equations (4a, b) can be removed from the
summations.

Rather than work with the customary convected wave equation, we simplify
the governing equations by de"ning new dependent variables Q, Q

s
, Q

i
, and <

r
by

the relations

Q(r, Z)"P(r, Z)e*iMZ, Q
s
(r, Z)"P

s
(r, Z)e*iMZ, (6a, b)

Q
i
(r, Z)"P

i
(r, Z)e*iMZ, <

r
(r, Z)";

r
(r, Z)e*iMZ. (6c, d)

Combining equations (4}6) with equation (2) yields the two-dimensional
Helmholtz equation
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s
"0 (7)

for the mth modal coe$cient of scattered pressure. Using equations (3}6), the mth
radial component of the momentum equation (3) can be written as

e~* (i@M)Z<
r
(r, Z)"

b
M P

Z

~=

e~*(i@M)Z{
LQ
Lr

(r, Z@) dZ@. (8)

If the duct is stationary, then equations (7) and (8) reduce to
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and
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r
(r, Z)"

i
k

LP
Lr

(r, Z). (10)

We note that equations (7}10) are valid for points not lying on the stretched duct.
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2.2. BOUNDARY CONDITIONS

To meet noise certi"cation requirements, it is necessary to treat the engine duct
with noise suppression devices. We consider an axisymmetric, locally reactive liner
on the duct interior wall whose surface admittance is circumferentially uniform.
The admittance in the axial direction is assumed to be piecewise constant. This
property implies that any portion of the duct interior may be lined or hard and
allows for inclusion of an axially segmented liner. The hard wall boundary
condition is used for the duct exterior wall.

We introduce the concept of a surface function to facilitate discussions of the
boundary condition and subsequent integral equation derivations. Let f (r, Z) be an
arbitrary "eld function and assume that the stretched, moving axial co-ordinates of
the duct trailing and leading edges are a and b respectively. De"ne the surface
functions f $(Z) by the formulas

f $(Z)" lim
r?l

$

f(r, Z), Z3 (a, b). (11)

Note that the positive (negative) superscript refers to the duct exterior (interior)
surface.

On the outer duct wall, the hard wall boundary condition implies that

<`
r

(Z)"0, Z3 (a, b). (12a)

In reference [7] it is shown that if a represents the circumferentially uniform and
axially piecewise constant speci"c acoustic admittance on the duct interior surface,
then in the stretched, moving frame of reference, the surface modal coe$cients of
radial velocity and pressure satisfy the boundary equation

!e*(i@M)Z<~
r

(Z)#
iMa
b2i

d
dZ

[e~*(i@M)ZQ~](Z)"0, Z3 (a, b). (12b)

In the absence of #ow, the boundary conditions reduce to

;`
r

(Z)"0, Z3 (a, b) (13a)
and

!;~
r

(Z)#aP~(Z)"0, Z3 (a, b). (13b)

The momentum equation (8) is used to eliminate radial velocity from equations
(12a, b) yielding

A
LQ
LrB

`
(Z)"0, Z3 (a, b), (14a)

!e~*(i@M)Z A
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LrB
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(Z)#
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b3i

d2

dZ2
[e~*(i@M)ZQ~](Z)"0, Z3 (a, b), (14b)
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and

P
a

~=

e~*(i@M)Z{
LQ
Lr

(1, Z@) dZ@"0. (15)

Equations (14a, b) are obtained by di!erentiating equations (12a, b) and (15) results
by evaluating equation (12a) at the trailing edge. These equations are valid for
0)M(1 but equation (15) is satis"ed trivially for MP0 and provides no
additional information. Note that for M"0 and a"0 (hard wall interior) we have
the classical Neumann boundary conditions. Also, if we add a second co-annular
duct, then boundary conditions similar to equations (14, 15) also apply to the
second duct.

2.3. FARFIELD RADIATION CONDITION AND EDGE CONDITIONS

In order to have a uniquely solvable BVP, we must constrain the behavior of the
acoustic pressure in the far "eld and at the duct edges. To ensure continuity of
velocity at the trailing edge, we impose the Kutta condition

lim
Z?a`

[Q`(Z)!Q~(Z)]"0. (16)

For physically reasonable solutions to exist, we also require the acoustic pressure to
be integrable everywhere and particularly in any neighborhood about the leading
edge.

The boundary value problem is "nalized by applying the Sommerfeld far"eld
radiation condition, yielding the constraint

lim
o/Jr2`Z2?=

JoA
LQ
Lo

#iiQB"0. (17)

2.4. BVP SUMMARY

We summarize the above results by listing a complete two-dimensional BVP for
the unknown scattered acoustic pressure in terms of the known incident pressure. It
is assumed that the functions Q

i
and their derivatives are known, satisfy equation

(17), and are continuous across the duct surface. For M*0,
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(r, Z), ∀(r, Z), (18b)
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(Z)"0, Z3 (a, b), (18c)
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!e~*(i@M)Z A
LQ
Lr B

~
(Z)#

iM2a
b3i

d2

dZ2
(e~*(i@M)ZQ~)(Z)"0, Z3 (a, b), (18d)

P
a

~=

e~*(i@M)Z{
LQ
Lr

(1, Z@) dZ@"0, lim
Z?a`

[Q`
s

(Z)!Q~
s

(Z)]"0 (18e, f)

P
R

DQ
s
D dR(R, R any neighborhood about leading edge, (18g)

and

lim
o/Jr2`Z2?=

JoA
LQ

s
Lo

#iiQ
sB"0. (18h)

3. THE BOUNDARY INTEGRAL EQUATION FORMULATION

In this section, we convert the two-dimensional boundary value problem (18a}h)
to a system of boundary integral equations using Helmholtz potentials [8]. This
approach is motivated by its computational simplicity relative to purely numerical
methods based on "nite di!erences or "nite elements.

These latter methods involve the calculation and storage of the entire acoustic
"eld and must resort to special treatment at the far"eld boundary. Consequently,
high-frequency, far"eld predictions require excessive computer memory and
computational time. It is shown in reference [9] that these drawbacks can be
diminished somewhat by coupling near"eld "nite-element results to Kirchho! 's
radiation formula.

Potential methods, as applied here, involve the pointwise calculation of the
acoustic "eld by evaluating duct surface integrals. Noise predictions are calculated
at user-de"ned locations only and computer storage is minimal. The potential
representation satis"es the Sommerfeld radiation condition implicitly. Thus,
numerical treatment at a "ctitious far"eld boundary is avoided. Input to the
potential integrals is obtained by solving a system of hypersingular integral
equations for unknown surface functions. The di$culties associated with solving
singular integral equations are mitigated by employing innovative analytical and
numerical techniques.

There is extensive research in the literature on the application of integral
equation techniques to acoustic scattering problems, much of which is discussed in
reference [10]. Of particular relevance to the BIEM is the work in references
[11}14]. The theory and integral equation terminology presented in reference [11]
provide the foundation for the BIEM theoretical discussions. Martinez in
references [12}14] has applied singular integral equation methods to the study of
sound scattered by a thin, "nite-length duct. We expand upon this original research
by applying advanced integral equation solution methods and include the ability to
treat arbitrary circumferential modes, uniform in#ow, enhanced liner models, and
a wider range of operating parameters.
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3.1. HELMHOLTZ POTENTIAL REPRESENTATION

The analysis begins with an analytical expression for the Green function,
G(r, r@, Z!Z@), for the two-dimensional Helmholtz operator (18a). G satis"es the
radiation condition (18h) and can be written

G(r, r@, Z!Z@)"
1
2n P

n

0

cosmt
e~*iR

R
dt, (19)

where

R"Jr2#r@2!2rr@cost#(Z!Z@)2. (20)

To facilitate integral equation analysis and numerical computation, we introduce
an integral operator notation. For an arbitrary integrable surface function f, de"ne
single- and double-layer "eld operators s and d by the equations

s[ f ](r, Z)"P
b

a

f (Z@)s(r, Z!Z@) dZ@ (21)

and

d[ f ](r, Z)"P
b

a

f (Z@)d (r, Z!Z@) dZ@, (22)

where the kernels s and d are given by

s(r, Z!Z@)"G(r, 1, Z!Z@) (23)
and

d (r, Z!Z@)"!

LG
Lr@

(r, 1, Z!Z@). (24)

The integrals in equations (21, 22) are well de"ned for points (r, Z) not on the
stretched duct surface and are equivalent to the classical single- and double-layer
potentials. Care must be exercised when evaluating equations (21, 22) on or near
the duct surface.

We de"ne additional "eld operators by calculating the "rst radial derivative of
s and d. Denote by s

r
and d

r
the operators

s
r
[ f ](r, Z)"

L
Lr

Ms[ f ](r, Z)N"P
b

a

f (Z@)s
r
(r, Z!Z@) dZ@ (25)

and

d
r
[ f ](r, Z)"

L
Lr

Md[ f ](r, Z)N"P
b

a

f (Z@)d
r
(r, Z!Z@) dZ@, (26)

where

s
r
(r, Z!Z@)"

Ls
Lr

(r, Z!Z@) (27)
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and

d
r
(r, Z!Z@)"

Ld
Lr

(r, Z!Z@). (28)

By applying the Helmholtz potential representation, the scattered pressure can
be written as a sum of single- and double-layer Helmholtz potentials yielding

Q
s
(r, Z)"s[q

1
](r, Z)#d[q

2
](r, Z). (29)

Equation (29) is a solution of equations (18a) and (18h). The unknown layer
densities q

1
and q

2
are related to the jumps in acoustic pressure and its radial

derivative across the duct surface. The densities are a solution to a system of
hypersingular integral equations, which we derive below, and once determined
provide input to equation (29) for the pointwise calculation of the acoustic pressure
"eld.

3.2. SURFACE OPERATOR NOTATION

To apply the boundary conditions (18c}e) to the potential representation (29),
it is necessary to evaluate directly the single- and double-layer potentials and
their derivatives on the stretched duct surface. The resulting integrals yield
one-dimensional surface operators with singular kernels that require analytical
treatment for their evaluation.

For Z3[a, b] and su$ciently smooth f, we de"ne the surface operators S and
D by directly evaluating the "eld operators (21, 22) on the duct surface. Thus

S[ f ](Z)"P
b

a

f (Z@)S(Z!Z@) dZ@ (30)

and

D[ f ](Z)"P
b

a

f (Z@)D (Z!Z@) dZ@, (31)

where the kernels S and D are given by

S (Z!Z@)"s (1, Z!Z@) (32)
and

D (Z!Z@)"d (1, Z!Z@). (33)

Similarly, we form the operators S
r
and D

r
by direct evaluation of the di!erentiated

"eld operators (25, 26) which yield

S
r
[ f ](Z)"P

b

a

f (Z@)S
r
(Z!Z@) dZ@ (34)

and

D
r
[ f ](Z)"P

b

a

f (Z@)D
r
(Z!Z@) dZ@, (35)
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where

S
r
(Z!Z@)"

Ls
Lr

(1, Z!Z@) (36)

and

D
r
(Z!Z@)"

Ld
Lr

(1, Z!Z@). (37)

3.3. SURFACE KERNEL PROPERTIES

The kernels (32, 33) and (36, 37) are singular for Z!Z@"0. It is important
both theoretically and computationally to determine the precise nature of
the singularities. We analytically separate the singular portions of the kernels
from the bounded parts by applying small argument analysis. Details are given in
Appendix A. In equations (38}41) below, the kernels are written as a sum of
singular and bounded terms. The bounded parts of the kernels are denoted by
a superscript B and are written out explicitly in Appendix A:

S (Z!Z@)"!

1
2n

ln DZ!Z@ D#SB(Z!Z@), (38)

D(Z!Z@)"!

1
4n

ln DZ!Z@ D#DB(Z!Z@), (39)

S
r
(Z!Z@)"!D(Z!Z@), (40)

D
r
(Z!Z@)"!

1
2n(Z!Z@)2

#

4(i2!m2)#3
16n

ln DZ!Z@ D#DB
r
(Z!Z@). (41)

The leading behavior of the kernels (38}40) is logarithmic. Therefore, the
associated operators are weakly singular. The leading term of the kernel (41) is of
the strongly singular Hadamard type [15]. Consequently, the integral in equation
(35) is divergent and must be interpreted in the Hadamard "nite part sense.

3.4. LAYER CONTINUITY PROPERTIES

Using the above surface operator notation, we state well-known continuity
properties for the single- and double-layer "eld operators (21, 22) and their radial
derivatives (25, 26) as "eld points approach the stretched duct surface from the
interior or exterior of the duct. For a su$ciently smooth surface function f, we have
the following results [8]:

lim
r?1

$

s[ f ](r, Z)"S[ f ](Z), (42)

lim
r?1

$

d[ f ](r, Z)"G1
2
f (Z)#D[ f ](Z), (43)
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lim
r?1

$

s
r
[ f ](r, Z)"G1

2
f (Z)!D[ f ](Z), (44)

lim
r?1

$

d
r
[ f ](r, Z)"D

r
[ f ](Z). (45)

Applying equations (42}45) to equation (29) establishes the formulas

Q`
s

(Z)!Q~
s

(Z)"!q
2
(Z) (46)

and

A
LQ

s
Lr B

`
(Z)!A

LQ
s

Lr B
~

(Z)"!q
1
(Z), (47)

which relate the layer densities to the jumps in scattered pressure and its radial
derivative across the stretched duct surface.

3.5. BOUNDARY INTEGRAL EQUATIONS

By applying the continuity results (42}47), we replace the boundary conditions
(18c}e) with an equivalent set of integral equations for the unknown surface
functions q

1
and q

2
in terms of the known incident pressure and its radial

derivative.
The exterior boundary condition (18c) can be written

!A
1
2

I#DB[q
1
](Z)#D

r
[q

2
](Z)"!

LQ
i

Lr
(1, Z), Z3 (a, b), (48)

where I is the identity operator. This integral equation is hypersingular due to the
presence of the operator D

r
. It is worth mentioning here that in many applications,

such as lifting wing problems, it is customary to work with equation (48) after
performing an axial integration (recall the comments following equations (14, 15)).
In this case, the dominant kernel has a less singular Cauchy term. However, no
advantage is obtained by this extra calculation because the singular operators are
computed analytically. Furthermore, for numerical work, we "nd that working
with the integrated version of equation (48) is much more cumbersome.

The interior boundary condition (18d) is replaced by the sum of equations (18c)
and (18d) yielding the system of equations

!e~*(i@M)Zq
1
(Z)#

iM2a
b3i

d2

dZ2
[e~*(i@M)ZQ~](Z)"0, Z3 (a, b), (49)

and
Q~(Z)"Q

1
(1, Z)#S[q

1
](Z)#(1

2
I#D)[q

2
](Z), Z3 (a, b). (50)

Equations (49, 50) can be combined to yield a single equation by computing two
tangential derivatives of Q~. The resulting integral equation contains both Cauchy
and Hadamard type kernels. It is computationally simpler to introduce a third
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unknown function, namely Q~, and work with the integro-di!erential equations
(49, 50). We expound on this in the integral equation solution of section 4.4. For
small Mach number and large i, equations (49, 50) can be approximated by the
much simpler equation

(b3I#iaiS)[q
1
](Z)#iai(1

2
I#D)[q

2
](Z)"!iaiQ

i
(1, Z), Z3 (a, b). (51)

The boundary integral equations are supplemented by equation (18e), which
after substitution of the radial derivative of equation (29) produces the auxiliary
equation

P
a

~=

e~*(i@M)Z{G
LQ

i
Lr

(1, Z@)#s
r
[q

1
](1, Z@)#d

r
[q

2
](1, Z@)N dZ@"0. (52)

As mentioned earlier, this equation is satis"ed trivially for M"0 and provides no
additional information.

If the interior wall is hard (a,0), then equations (48}52) reduce to the familiar
Neumann problem

q
1
(Z)"0, Z3 (a, b), (53)

D
r
[q

2
](Z)"!

LQ
i

Lr
(1, Z), Z3 (a, b), (54)

with auxiliary condition

P
a

~=

e~*(i@M)Z{G
LQ

i
Lr

(1, Z@)#d
r
[q

2
](1, Z@)H dZ@"0. (55)

The solution of equations (53}55) was considered in reference [1].

3.6. EDGE CONDITIONS

The system of integral equations (48}52) admits in"nitely many solutions and
must be supplemented with additional conditions for uniqueness. The as yet
unsatis"ed BVP edge conditions (18f}g) provide the required constraints by
restricting the bahavior of the double-layer density, q

2
, at the duct leading and

trailing edges. We omit the edge condition derivations, which involves asymptotic
expansions of the hypersingular portion of the singular integral equation (48). See
reference [16] for a detailed discussion of this analysis.

We "nalize the boundary integral equation formulation by stating the
asymptotic behavior of q

2
near the duct edges:

q
2
(Z)"O(JZ!a), ZPa`, (56a)

and

q
2
(Z)"OA

M

Jb!ZB#O(Jb!Z), ZPb~. (56b)
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Note that for M'0, q
2

has an in"nite singularity at the duct leading edge,
which is a well-known result in lifting surface theory. This term disappears for the
no in#ow case.

3.7. BOUNDARY INTEGRAL EQUATION SUMMARY

We have succeeded in replacing the BVP (18a}h) by an equivalent boundary
integral equation formulation which we now summarize.

For 0)M(1, the mth circumferential mode of total acoustic pressure is given
by

Q(r, Z)"

G
Q

i
(r, Z)#s[q

1
](r, Z)#d[q

2
](r, Z),

Q
i
(r, Z)#S[q

1
](Z)#(G1

2
I#D)[q

2
](Z),

(r, Z) not on stretched duct surface,
Z3 (a, b), rP$1,

(57)

where q
1

and q
2

satisfy
(1) the system of strongly singular integral equations

!A
1
2

I#DB[q
1
](Z)#D

r
[q

2
](Z)"!

LQ
i

Lr
(1, Z), Z3 (a, b), (58a)

!e~*(i@M)Zq
1
(Z)#

iM2a
b3i

d2

dZ2
[e~*(i@M)ZQ~](Z)"0, Z3 (a, b), (58b)

Q~(Z)"Q
i
(1, Z)#S[q

1
](Z)#(1

2
I#D)[q

2
](Z), Z3 (a, b); (58c)

(2) the auxiliary condition

P
a

~=

e~*(i@M)Z{G
LQ

i
Lr

(1, Z@)#s
r
[q

1
](1, Z@)#d

r
[q

2
](1, Z@)H dZ@"0; (58d)

(3) the edge conditions

q
2
(Z)"O(JZ!a), ZPa`, (58e)

q
2
(Z)"OA

M

Jb!ZB#O (Jb!Z), ZPb~. (58f )

For co-annular ducts, additional integral operators and layer densities must be
de"ned to accommodate both ducts. In this case, equations (57) and (58a}f ) have to
be coupled to similar sets of equations to account for scattering by the second duct.
Theoretically, this procedure does not change the singular character of the integral
equation system nor the solution method. However, the computational complexity
is nearly double.
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4. INTEGRAL EQUATION SOLUTION

In this section, we present details of the numerical solution of equations (58a}f ).
Existence and uniqueness results are brie#y discussed for the hard wall interior
case. A theoretical discussion on the solvability of the entire system (58a}f ) is
lengthy and will be deferred.

Due to edge conditions for the double-layer density (58e, f ) we are motivated to
seek a solution to equations (58a}f ) in the form

q
2
(Z)"AS

Z!a
b!Z

#J(b!Z)(Z!a)q (Z), Z3 (a, b). (59)

In equation (59), A is an unknown constant and q an unknown HoK lder continuous
function.

There are no restrictions on the edge behavior of the single-layer density. We
note however, that since the interior wall admittance can be discontinuous it
follows from equation (58b}c) that q

1
is also discontinuous at the points of

discontinuity in a.
Our solution methodology is best understood by "rst examining the simple case

of a hard wall interior with no in#ow. We next discuss the hard wall interior case in
the presence of in#ow, which complicates the solution process due to the in"nite
singularity in the double-layer density at the duct leading edge. Finally, we expand
the method to include the liner case.

4.1. HARD WALL INTERIOR WITH NO INFLOW

We simplify the analysis by the introduction of additional operator notation. Let
f be an arbitrary HoK lder continuous function and let K denote any of the previously
de"ned integral operators; then we de"ne new operators K$ by the formulas

K$[ f ](Z)"K[(b!Z@)$1@2 (Z@!a)1@2f ](Z), Z3 (a, b). (60)

For M"0 and a,0, application of equations (59, 60) to equations (58a}f )
produces the single integral equation

D`
r

[q](Z)"!

LQ
i

Lr
(1, Z), Z3 (a, b). (61)

Equation (61) is a one-dimensional, "rst kind integral equation with a Hadamard
kernel. Integral equations of this type appear frequently in the literature and
have been applied to problems in acoustics, aerodynamics, elasticity, and
electrodynamics (see references [17, 18], for example).

Due to the appearance of the weight function J(b!Z)(Z!a), it is natural to
seek a solution to equation (61) in the form

q(Z)"
=
+
n/0

a
n
;

n A
2Z!a!b

b!a B. (62)
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It is shown in reference [19] that if the source term in equation (61) is expandable in
a series of second kind Chebyshev polynomials, then equation (61) is uniquely
satis"ed by a series solution such as equation (62) except possibly at a countable set
of eigenfrequencies. In section 5.2, we demonstrate numerically that some of the
eigenfrequencies of D`

r
correspond approximately to the transverse resonant

frequencies of the in"nite duct problem.
In practice, equation (62) is truncated and the unknown constants a

n
must be

determined numerically, usually by some projection technique such as the method
of collocation or Galerkin. The collocation method is simple to implement and
requires fewer calculations than other popular methods. For these reasons it is the
solution method of choice here.

To apply the collocation method, we consider the approximate solution

qN (Z)"
N2
+
n/0

a
n
;

nA
2Z!a!b

b!a B (63)

and de"ne N
2
#1 distinct collocation points

MZ
j
NN2`1
j/1

, Z
j
3 (a, b)∀j. (64)

We next require the approximate solution to satisfy equation (61) at the collocation
points, which yields the linear system of equations

N2
+
n/0

a
n
D`

r
[;

n
](Z

j
)"!

LQ
i

Lr
(1, Z

j
), j"1,2, N

2
#1, (65)

for the a
n
's. Golberg has shown that if the collocation points are chosen as the zeros

of ;
N2`1

, then equation (65) is solvable, except at eigenfrequencies, and the series
(63) converges to the actual solution q [19].

The evaluation of equation (65) involves the calculation of integrals with
"nite-part and logarithmic integrands. To avoid time-consuming numerical
integration of these terms, we apply the analytical results of Appendices A and B.
The bounded portion of the integral operator is computed using Gaussian
quadrature with weights and nodes based on the second-kind Chebyshev
polynomials. The above combination of collocation points and numerical
integration scheme yields results as accurate as those obtained by the more
computationally intensive Galerkin method [19].

4.2. HARD WALL INTERIOR WITH INFLOW

For a,0 and 0(M(1, equations (58a}f ) reduce to

AD~
r

[1](Z)#D`
r

[q](Z)"!

LQ
i

Lr
(1, Z), Z3 (a, b), (66)

and

P
a

~=

e~*(i@M)Z{G
LQ

i
Lr

(1, Z@)#Ad~
r

[1](1, Z@)#d`
r

[q](1, Z@)H dZ@"0. (67)



DUCTED FAN NOISE 1035
In equations (66, 67), A and q(Z) are unknown. We brie#y show, under certain
conditions, that if the no in#ow problem (61) is uniquely solvable, then so are
equations (66, 67). Furthermore, under the same conditions, A and q (Z) can be
determined separately which we also prove below.

De"ne the linear functionals g$

d and the known constant C
0

by the relations

g$

d [ f ]"P
a

~=

e~*(i@M)Z{d$

r
[ f ](1, Z@) dZ@ (68)

and

C
0
"!P

a

~=

e~*(i@M)Z{
LQ

i
Lr

(1, Z@) dZ@. (69)

Using equations (68, 69) we rewrite equation (67) as

Ag~d [1]#g d̀ [q]"C
0
. (70)

Assume that conditions are such that equation (61) is uniquely solvable, then
the operator D`

r
has a left inverse, which we denote by (D`

r
)~1. Consequently, we

&&solve'' equation (66) for q to yield

q(Z)"/
1
(Z)#A/

2
(Z), Z3 (a, b), (71)

where

/
1
(Z)"!(D`

r
)~1C

LQ
i

Lr D (Z), Z3 (a, b), (72)

/
2
(Z)"!D

1
[1](Z), Z3 (a, b), (73)

and
D

1
"(D`

r
)~1D~

r
. (74)

Note that /
1

and /
2

are known functions.
We obtain an explicit expression for the unknown constant A in terms of known

quantities by applying equations (71}74) to equation (70). This substitution gives

A"

C
0
!gd̀ [/

1
]

g~d [1]!gd̀ [/
2
]
. (75)

If g~d [1]Ogd̀ [/
2
], it follows that A is "nite and equation (71) de"nes a meaningful

expression for q.
The above results suggest the following algorithm for solving the hard wall

interior integral equations with in#ow: Step (1), solve the no in#ow case, i.e., invert
D`

r
. Step (2), calculate A via equations (72}75). Step (3), calculate q using equations

(71) and (75).
Theoretically, this approach is equivalent to the no in#ow case, which implies

that the results of Golberg apply [19]. Furthermore, since the computational time
required for the calculation of the functionals (68) is negligible compared to the time
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needed to compute the matrix for D`
r
, it follows that the above algorithm is also

computationally equivalent to the no in#ow case.
In reference [1], a slightly di!erent approach was used to separate A and q. The

resulting algorithms were subsequently shown to be convergent [20].

4.3. LINED INTERIOR WITH NO INFLOW

In this case, equations (58a}f ) reduce to the system of integral equations

(I#iaiS)[q
1
](Z)#iaiA

1
2

I`#D`B[q](Z)"!iaiQ
i
(1, Z), Z3 (a, b), (76a)

!A
1
2
I#DB[q

1
](Z)#D`

r
[q](Z)"!

LQ
i

Lr
(1, Z), Z3 (a, b). (76b)

We defer a detailed theoretical discussion of the singular system (76a, b) to a future
publication and, instead, focus on the solution technique.

To solve equation (76a, b) numerically, we again apply the collocation method.
The double-layer density q is approximated as in the no in#ow, hardwall case. Since
there are no restrictions on the single-layer edge behavior and the weight function
for the Legendre polynomials is unity, we seek an approximation to q

1
of the form

qN
1
(Z)"

N1
+
n/0

b
n
P
n A

2Z!a!b
b!a B. (77)

Further motivation is provided by the fact that the numerical accuracy achievable
by the expansion (77) is commensurate with that for the double-layer density
approximation (63).

We collocate equation (76a) at the zeros of P
N1`1

, denoted by M>
j
NN1`1
j/1

, and
equation (76b) at the zeros of ;

N2`1
, denoted by MZ

j
NN2`1
j/1

, yielding the
(N

1
N

2
)](N

1
N

2
) linear system

N1
+
n/0

b
n
(I#iaiS)[P

n
](>

j
)#iai

N2
+
n/0

a
nA

1
2

I`#D`B[;
n
](>

j
)

"!iaiQ
i
(1, >

j
), j"1,2, N

1
, (78a)

!

N1
+
n/0

b
nA

1
2

I#DB[P
n
](Z

j
)#

N2
+
n/0

a
n
D`

r
[U

n
](Z

j
)

"!

LQ
i

Lr
(1, Z

j
), j"1,2, N

2
, (78b)

for the unknown expansion coe$cients. No theoretical results exist regarding the
solvability and convergence of this numerical method. However, computational
evidence suggests that the linear system (78a, b) is stable and the discretized
solutions converge to the actual solution of the system of integral equations (76a, b).
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4.4. LINED INTERIOR WITH INFLOW

De"ne the functional gs by the formula

gs[ f ]"P
a

~=

e~*(i@M)Z{s
r
[ f ](1, Z@) dZ@. (79)

For a lined interior and 0(M(1, equations (58a}f ) assume their most complex
form:

!e~*(i@M)Zq
1
(Z)#

iM2a
b3i

d2

dZ2
(e~*(i@M)ZQ~)(Z)"0, Z3 (a, b), (80a)

Q~(Z)"Q
i
(1, Z)#S[q

1
](Z)

#AA
1
2

I~#D~B[1](Z)#A
1
2
I`#D`B[q](Z), Z3 (a, b), (80b)

!A
1
2

I#DB[q
1
](Z)#D`

r
[q](Z)#AD~

r
[1](Z)"!

LQ
i

Lr
(1, Z), Z3 (a, b),

(80c)

gs[q1
]#Ag~d [1]#gd̀ [q]"C

0
. (80d)

Equations (80a, b) can be combined to form one equation by substituting
equation (80b) into equation (80a). The resulting hypersingular integral equation
contains two axial derivatives of the single- and double-layer surface operators. It is
far simpler computationally to introduce a third unknown function Q~, which we
again approximate by a "nite sum of Legendre polynomials. A linear system is
obtained by applying the usual collocation method and the unknown constant A is
determined by a manner similar to that used for the hard wall case.

We simplify the solution process even further by replacing equations (58b, c) with
the approximate equation (51). Thus, equations (80a, b) reduce to

(b3I#iaiS)[q
1
](Z)#iaiA(1

2
I~#D~)[1](Z)

#iai(1
2
I`#D`)[q](Z)"!iaiQ

i
(1, Z), Z3 (a, b). (81)

This equation is valid for small values of the parameter M/i and is similar to the
no in#ow integral equation (76a). The system of equations (81) and (80c, d) is then
solved by "rst separating the determination of the constant A and then applying the
collocation scheme described in the previous section.

5. RESULTS

In this section, computational results are presented that demonstrated BIEM
features. We "rst discuss the ducted fan noise prediction code TBIEM3D [6] and
its application to parametric noise reduction studies. Next, the relationship
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between the "nite duct BIEM and in"nite duct prediction methods is established by
analyzing the spectral content of the BIEM interior pressure "eld. Lastly, we
illustrate BIEM liner capability by conducting a numerical experiment in which the
e!ects of interior admittance distributions on radiated sound are studied.

5.1. THE DUCTED FAN NOISE PREDICTION CODE TBIEM3D

A PC-based computer program, TBIEM3D (thin duct, BIEM, three-
dimensional), has been developed which incorporates the BIEM solution features
[6]. Results from a typical TBIEM3D calculation are shown in Figure 2. In this
simulation, 20 spinning point axial dipoles, situated on a disk in the middle of
a short duct, generate the 20th circumferential mode of acoustic pressure and its
harmonics. The duct walls are hard and sound propagates in the presence of
a uniform axial #ow with M"0)4. This con"guration was chosen to approximate
the thrust component of loading noise produced by a 20-bladed fan. Figure 2(a)
shows a cut-a-way view of the engine duct in which contours of instantaneous
acoustic pressure for the m"20 circumferential mode are plotted in the duct
interior. Conditions are such that only one radial mode is cut-on. Doppler e!ects
and re#ections from the duct openings are included. Portions of sound reaching the
duct ends radiate to the far "eld as indicated in Figure 2(b). The combined acoustic
Figure 2. Sample TBIEM3D results (hardwall interior). Contours of instantaneous acoustic
pressure (Pa): (a) cut-away view, (b) side view, (c) scale. N"20, m"20, k"22, M"0)4, ¸

D
"0)5.

One radial mode cut on.
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"eld in Figure 2 is composed of 10,000 "eld calculations and consumed
approximately 4}5 min computational time on a laptop personal computer with
a Pentium 133 processor and 32 Mbytes of random access memory.

To demonstrate the e!ectiveness of TBIEM3D as a noise prediction tool, the
authors and co-workers have applied the code in several engineering studies. In
reference [21], TBIEM3D was used to quantify the concept of generalized
radiation impedance and to assess the accuracy of combining in"nite duct
propagation results with Rayleigh's radiation formula. Results from this research
clearly illustrate the similarities and di!erences between the BIEM and in"nite duct
prediction methods.

TBIEM3D has been applied to both passive and active noise control research
[22}25]. For given liner length and location, optimal liner impedances were
calculated for a host of operating situations in which circumferential mode number,
in#ow Mach number, and excitation frequency were varied [22]. Optimal liner
impedance is also a function of the designer's de"nition of noise attenuation. In this
regard, TBIEM3D can be easily adapted to accommodate noise metrics that are
based on the radiated or internal acoustic pressure "elds. For example, in reference
[22], liner impedance was chosen so that the maximum sound pressure level along
an arc of far"eld observers in the direction of the principal radial mode was
minimized. Active noise control research based on TBIEM3D has focused on using
simple point control sources and a feedforward algorithm to minimize the sound
along a particular far"eld direction produced by a given source con"guration [23].

A two-dimensional version of the code has been used to examine the e!ect of
a scarf inlet on far"eld noise radiation from a short duct [24, 25]. Results from these
studies indicate that the scarf inlet is very e!ective at redirecting high order
transverse modes away from noise-sensitive regions over a wide range of excitation
frequencies. This phenomenon is well known at high frequency [26]. Calculations
suggest that the scarf inlet also redirects lower order transverse modes but to
a lesser degree. In the absence of #ow, the scarf inlet has little a!ect on aft radiation
patterns. However, the amount of distortion in the aft region due to the scarf inlet
appears to increase with increasing in#ow Mach number. It was further shown that
the interior acoustic "eld may be seriously altered by the presence of a scarf inlet
which provides an additional mechanism for passive noise control.

5.2. HARD WALL INTERIOR: SPECTRAL ANALYSIS

In this two-part numerical experiment, we analyze the spectral contents of the
BIEM hard wall interior "eld and relate the "ndings to the usual in"nite duct
eigenfunction expansion. To simulate in"nite duct conditions with TBIEM3D, we
consider a long duct (¸

D
"6)0) with the source disk located at one end.

For an in"nitely long hard wall duct with unit radius, it is well known that, due
to the phenomenon of transverse resonance, the interior Helmholtz problem is
unsolvable at the cut-on wavenumbers Mkmn

r
N=
n/1

, where J@
m
(kmn

r
)"0. It is intuitive to

assume that the discretized linear system for the long, "nite duct problem should
experience some ill-conditioning near the in"nite duct eigen-wavenumbers.
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In Figure 3, we plot the ¸
1
condition number of the D`

r
matrix (see equation (65))

as a function of excitation wavenumber, k, for the circumferential mode numbers
m"4 and 10. The location of the in"nite-duct resonant wavenumbers are
denoted by dashed lines. As expected, serious ill-conditioning occurs near
the cut-on wavenumbers. Also present are lesser spikes of ill-conditioning.
The cause of the "nite duct ill-conditioning is probably due to the organ-pipe
resonance phenomenon. This subject and the viability of the BIEM solution at
these organ-pipe eigen-wavenumbers will be addressed in future research by the
authors.

Part two of this experiment involves comparing BIEM interior axial
wavenumber spectra with the discrete in"nite duct results. The in"nite duct axial
wavenumbers are given by the formula [3]

kmn
z
"

i
b C!M$S1!A

kmn
r
i B

2

D. (82)

The duct mode (m, n) is cut-on if i'kmn
r

. To compute the axial spectrum of
the BIEM interior "eld, the acoustic pressure is calculated along a line parallel to
the duct axis and analyzed using FFT techniques. Axial BIEM spectra for
two separate cases are presented in Figure 4 and compared with the in"nite duct
spectra. Operating conditions were chosen so that three radial modes were cut-on.
There are two important observations from these results. First, the locations of the
BIEM spectral peaks are in excellent agreement with the in"nite duct axial
wavenumbers. Second, re#ections at the duct ends are included and the relative
strengths of propagated and re#ected modes can be easily determined using
BIEM results.
Figure 3. ¸
1

condition number of D`
r

matrix as a function of wavenumber: (a) m"4, (b) m"10;
M"0)0, ¸

D
"6)0. Dashed lines indicate in"nite duct radial eigenvalues.
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5.3. SAMPLE LINER CALCULATIONS

We illustrate BIEM liner capabilities by studying the e!ect of interior admittance
distribution on noise radiation patterns. For this virtual experiment, we consider
a short duct, ¸

D
"0)5, with the source disk located in the middle of the duct.

Twenty spinning point axial dipoles generate incident sound in the presence of
Figure 5. Sound pressure levels for various liner admittance distributions: (a) hard wall interior, (b)
lined inlet, (c) lined exhaust, (d) lined inlet and exhaust, (e) scale; m"20, k"24)0, M"0)4, ¸

D
"0)5.

Figure 4. Axial wavenumber spectra for hard wall interior: (a) m"4, k"12)0; (b) m"10, k"20)0;
M"0)4, ¸

D
"6)0. Dashed lines indicate in"nite duct axial eigenvalues.
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a uniform in#ow with M"0)4. The rotational speed of the source disk is chosen
such that one radial mode is cut-on.

In Figure 5, contours of sound pressure level are plotted in the acoustic "eld
for four di!erent admittance distributions. Figure 5(a) shows the scattered "eld
for a hard wall interior. Three di!erent liner con"gurations are considered in
Figures 5(b}d). As shown in Figure 5(b), a portion of the inlet is lined (¸"0)2)
with admittance chosen to be optimal in the sense of reference [22]. Signi"cant
noise reduction in the forward region is attained. Figure 5(c) shows the results
of lining a portion of the exhaust duct. For this case, the admittance is not optimal.
Some noise reduction in the aft region is apparent with little or no reduction in
the forward region. In Figure 5(d), both the inlet and exhaust are lined resulting
in substantial noise reduction both forward and aft. Each case presented
here required several minutes computational time on a Pentium 133 personal
computer.

6. CONCLUDING REMARKS

A boundary integral equation method for the prediction of ducted fan engine
noise has been presented. Based on the equations of linearized acoustics, a classical
boundary value problem was derived in its entirety. The ability to treat uniform,
axial in#ow and locally reacting, axially segmented liners is included. Using
Helmholtz potentials, the BVP was recast in terms of a system of hypersingular
boundary integral equations. The extension of the BIEM to co-annular ducts was
described.

Innovations in the theoretical approach to solving the integral equation system
and in the analysis of the integral equation kernels have produced
a computationally e$cient solution procedure. The ducted fan noise prediction
program TBIEM3D incorporates the BIEM solution features and rapidly predicts
the sound "eld produced by the scattering of incident sound by a "nite-length
cylindrical duct.

Unlike in"nite duct prediction methods, the BIEM does not require the
decomposition of the acoustic "eld into its radial and axial components. However,
spectral evidence presented in the results section clearly establishes the connection
between the "nite-duct BIEM and in"nite-duct prediction methods. That is, for the
hard wall case, the BIEM interior "eld displays the axial and radial spectral
characteristics that are predicted by the in"nite duct theory. Furthermore,
re#ections due to the duct openings are accounted for implicitly without resorting
to approximate measures. It was also demonstrated that noise predictions
involving lined interiors are easily calculated without the need to solve the complex
eigenvalue problem.

It has been shown that TBIEM3D is accurate, executable on inexpensive
computer platforms, and applicable over a wide range of operating conditions.
Code versatility, ease of use, and rapid prediction capability are necessary features
for conducting cost-e$cient parametric noise reduction analyses. In this regard,
the e!ectiveness of TBIEM3D as an engineering analysis tool has been amply
demonstrated both here and in the literature [21}25].
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APPENDIX A: SINGULAR KERNEL ANALYSIS

We derive the singular surface kernel results (38}41) by applying small argument
analysis to the Green function (19) and its derivatives. Since no simple closed-form
expression exists for equation (19), it must be evaluated numerically. Due to the
singularities, conventional numerical integration fails when evaluating the Green's
function on the stretched duct surface. Thus, analytical methods are required for
resolution of the singular terms. For each kernel, the singular portion is separated
from the bounded part by subtracting the singular terms from the Green function
integrand. The resulting singular integrals are evaluated in closed form and the
remaining integrands are continuous everywhere and present no numerical
problems.

From equations (32) and (19), we have
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The integrand in equation (A1) is O(1/R
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) for small t and DZ!Z@D. Therefore, we
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is known in terms of elementary functions. One such choice is
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where
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We apply a similar analysis to the double-layer surface kernel to obtain
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Analysis for the hypersingular kernel (41) proceeds like before producing
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The expressions for DB
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are lengthy and will be given in two parts:
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and

C"!(3#4m2)/8. (A19)

APPENDIX B: SINGULAR INTEGRAL EVALUATIONS

In solving the system of integral equations (58a}g), hypersingular and
logarithmic integrals involving Legendre and second-kind Chebyshev polynomials
are encountered. We list without proof several pertinent integration results, which
can be obtained by applying the Plemelj}Sokhotski theorem and its logarithmic
analog [27]. Some of these results are well-known and appear in the literature (see
reference [28], for example):
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APPENDIX C: NOTATION

Parameters and variables

& denotes that a quantity is dimensional when appearing over a variable
a axial co-ordinate of duct trailing edge in stretched, moving frame
b axial co-ordinate of duct leading edge in stretched, moving frame
cJ ambient sound speed
J
m

"rst-kind Bessel function of order m
k "rJ

D
u8 /cJ , characteristic wave number

kmn
r

radial wavenumbers
kmn
z

axial wavenumbers
¸ liner length
¸
D

ratio of duct length to duct diameter
m circumferential mode number
M ";I /cJ , in#ow Mach number
n radial mode number
N number of sources
p@ Eulerian description of total acoustic pressure "eld
p@
i

Eulerian description of incident acoustic pressure "eld
p@
s

Eulerian description of scattered acoustic pressure "eld
P
n

Legendre polynomials
Q

n
associated Legendre functions of the second kind of order zero

(r, t, z) cylindrical co-ordinates in Eulerian frame
rJ
D

duct radius
tI , t time
¹

n
Chebyshev polynomials of the "rst kind

u@
r

Eulerian description of the radial component of acoustic velocity
;I axial speed of duct
;

n
Chebyshev polynomials of the second kind

Z axial co-ordinate in stretched, moving frame
a speci"c acoustic admittance on duct interior surface
b "J1!M2, stretching parameter
i "k/b, stretched characteristic wave number
o8
0

ambient density
u8 excitation frequency (radians/s)
XI shaft speed (radians/s)

Integral equation operators and kernels
d, d double-layer "eld operator and kernel
D, D double-layer surface operator and kernel
DB bounded portion of double layer surface kernel
d
r
, d

r
radial derivative of double-layer "eld operator and kernel

D
r
, D

r
radial derivative of double-layer surface operator and kernel

DB
r

bounded portion of double-layer radial derivative surface kernel
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s, s single-layer "eld operator and kernel
S, S single-layer surface operator and kernel
SB bounded portion of single-layer surface kernel
s
r
, s

r
radial derivative of single-layer "eld operator and kernel

S
r
, S

r
radial derivative of single-layer surface operator and kernel


	1. INTRODUCTION
	Figure 1

	2. BOUNDARY VALUE PROBLEM DERIVATION
	3. THE BOUNDARY INTEGRAL EQUATION FORMULATION
	4. INTEGRAL EQUATION SOLUTION
	5. RESULTS
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	6. CONCLUDING REMARKS
	REFERENCES
	APPENDIX A: SINGULAR KERNEL ANALYSIS
	APPENDIX B: SINGULAR INTEGRAL EVALUATIONS
	APPENDIX C: NOTATION

